Lecture 11

Cook-Levin Theorem (contd.), Search vs Decision

Constructing the ϕ_{x}

Constructing the ϕ_{x}

$$
x \in L \Longleftrightarrow \exists u \in\{0,1\}^{p(|x|)} \text {, s.t. } M(x, u)=1
$$

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}|x| \mid}\right)$, where $\left|I D_{i}\right|=c$, such that:

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right]$,

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }},, 1\right)$.

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }},, 1\right)$.

Constructing ϕ_{x} from x :

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }}, \ldots, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }}, \ldots, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }}, \ldots, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }}, \ldots, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$.
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }},-, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.
- That checks whether y and $I D$ satisfy the AND of conditions 1$), 2), 3$), and 4).

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$.
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }},-, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.
- That checks whether y and $I D$ satisfy the AND of conditions 1), 2), 3), and 4).

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }},-, 1\right)$.

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.
- That checks whether y and $I D$ satisfy the AND of conditions 1$), 2), 3$), and 4).

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1$.
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt },-}, 1\right) .\left(\right.$ Constant size $\left.\phi_{4}\right)$

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.
- That checks whether y and $I D$ satisfy the AND of conditions 1$), 2), 3$), and 4).

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1 .\left((3 c+1) \cdot 2^{(3 c+1)}\right.$ size $\left.\phi_{3_{i}}\right)$
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt },-}, 1\right) .\left(\right.$ Constant size $\left.\phi_{4}\right)$

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.
- That checks whether y and ID satisfy the AND of conditions 1), 2), 3), and 4).

Constructing the ϕ_{x}

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|I D_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }}, \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\operatorname{prev}(i)}, I D_{i}\right)=1 .\left((3 c+1) \cdot 2^{(3 c+1)}\right.$ size $\left.\phi_{3_{i}}\right)$
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt },-}, 1\right) .\left(\right.$ Constant size $\left.\phi_{4}\right)$

Constructing ϕ_{x} from x :

- Compute $\operatorname{prev}(i)$ and inputpos(i) by running M on $0^{|x|+p(|x|)}$.
- Construct boolean formula ϕ_{x} :
- With variables $Y_{1}, Y_{2}, \ldots Y_{|x|+p(|x|)}$ and $I D_{i 1}, I D_{i 2}, \ldots, I D_{i c}$ for every $i \in\left[1, p^{\prime}(|x|)\right]$.
- That checks whether y and $I D$ satisfy the AND of conditions 1$), 2), 3$), and 4).

3SAT is NP-Complete

3SAT is NP-Complete

Idea:

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

$$
\phi=
$$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

$$
\phi=\left(u_{1} \vee u_{2} \vee \ldots \vee u_{k}\right)
$$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

$$
\phi=\left(u_{1} \vee u_{2} \vee \ldots \vee u_{k}\right)
$$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

$$
\phi=\left(u_{1} \vee u_{2} \vee \ldots \vee u_{k}\right)
$$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

$$
\phi=\left(u_{1} \vee u_{2} \vee \ldots \vee u_{k}\right)
$$

$$
\phi^{\prime}=
$$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

Time to break a clause of k literals into a 3CNF formula:

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

Time to break a clause of k literals into a 3CNF formula:

- $T(k)=$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

Time to break a clause of k literals into a 3CNF formula:

- $T(k)=$
- $T(3)=c$

3SAT is NP-Complete

Idea: Reduce SAT to 3 SAT by repeatedly breaking down clauses of $k>3$ literals into two clauses of almost $k / 2$ many literals.

Time to break a clause of k literals into a 3CNF formula:

- $T(k)=2 \cdot T(k / 2+1)+O(k)$
- $T(3)=c$

Isn't 2SAT also NP-Complete?

Isn't 2SAT also NP-Complete?

$$
\left(u_{1} \vee u_{2} \vee u_{3}\right)
$$

Isn't 2SAT also NP-Complete?

Isn't 2SAT also NP-Complete?

Further breakdown isn't possible.

Search vs Decision

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea:

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea: Let $\phi=\left(u_{1} \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(\neg u_{1} \vee u_{3}\right)$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea: Let $\phi=\left(u_{1} \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(\neg u_{1} \vee u_{3}\right)$

$$
\phi_{u_{1}=0}=\left(0 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(1 \vee u_{3}\right)
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea: Let $\phi=\left(u_{1} \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(\neg u_{1} \vee u_{3}\right)$

$$
\begin{aligned}
& \phi_{u_{1}=0}=\left(0 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(1 \vee u_{3}\right) \\
& \phi_{u_{1}=1}=\left(1 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(0 \vee u_{3}\right)
\end{aligned}
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea: Let $\phi=\left(u_{1} \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(\neg u_{1} \vee u_{3}\right)$

$$
\begin{aligned}
& \phi_{u_{1}=0}=\left(0 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(1 \vee u_{3}\right)=\left(u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \\
& \phi_{u_{1}=1}=\left(1 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(0 \vee u_{3}\right)
\end{aligned}
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea: Let $\phi=\left(u_{1} \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(\neg u_{1} \vee u_{3}\right)$

$$
\begin{aligned}
& \phi_{u_{1}=0}=\left(0 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(1 \vee u_{3}\right)=\left(u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \\
& \phi_{u_{1}=1}=\left(1 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(0 \vee u_{3}\right)=\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(u_{2}\right)
\end{aligned}
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Idea: Let $\phi=\left(u_{1} \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(\neg u_{1} \vee u_{3}\right)$

$$
\begin{aligned}
& \phi_{u_{1}=0}=\left(0 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(1 \vee u_{3}\right)=\left(u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \\
& \phi_{u_{1}=1}=\left(1 \vee u_{2}\right) \wedge\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(0 \vee u_{3}\right)=\left(\neg u_{2} \vee \neg u_{3}\right) \wedge\left(u_{2}\right)
\end{aligned}
$$

If ϕ is satisfiable then either $\phi_{u_{1}=0}$ or $\phi_{u_{1}=1}$ is satisfiable.

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists. $B(\phi)$:

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists. $B(\phi)$:
if (ϕ is not satisfiable) return NULL

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists. $B(\phi)$:
if (ϕ is not satisfiable) return NULL for $i=1$ to n

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists. $B(\phi)$:
if (ϕ is not satisfiable) return NULL

$$
\text { for } i=1 \text { to } n / / n=\# \text { of variables of } \phi \text {. }
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists. $B(\phi)$:
if (ϕ is not satisfiable) return NULL for $i=1$ to $n / / n=\#$ of variables of ϕ.
if ($\phi_{u_{i}=0}$ is satisfiable)

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$. Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.

Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists. $B(\phi)$:
if (ϕ is not satisfiable) return NULL for $i=1$ to $n / / n=\#$ of variables of ϕ.
if ($\phi_{u_{i}=0}$ is satisfiable)

$$
u_{i}=0, \phi=\phi_{u_{i}=0}
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.
$B(\phi)$:
if (ϕ is not satisfiable) return NULL for $i=1$ to $n / / n=\#$ of variables of ϕ.
if ($\phi_{u_{i}=0}$ is satisfiable)

$$
u_{i}=0, \phi=\phi_{u_{i}=0}
$$

else if ($\phi_{u_{i}=1}$ is satisfiable)

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.
$B(\phi)$:
if (ϕ is not satisfiable) return NULL

$$
\text { for } i=1 \text { to } n / / n=\# \text { of variables of } \phi \text {. }
$$

if ($\phi_{u_{i}=0}$ is satisfiable)

$$
u_{i}=0, \phi=\phi_{u_{i}=0}
$$

else if ($\phi_{u_{i}=1}$ is satisfiable)

$$
u_{i}=1, \phi=\phi_{u_{i}=1}
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=$ SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.
$B(\phi)$:
if (ϕ is not satisfiable) return NULL
for $i=1$ to $n / / n=\#$ of variables of ϕ.
if ($\phi_{u_{i}=0}$ is satisfiable)

$$
u_{i}=0, \phi=\phi_{u_{i}=0}
$$

Runtime of B if ϕ has n variables:
else if ($\phi_{u_{i}=1}$ is satisfiable)

$$
u_{i}=1, \phi=\phi_{u_{i}=1}
$$

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.
$B(\phi)$:
if (ϕ is not satisfiable) return NULL
for $i=1$ to $n / / n=\#$ of variables of ϕ.
if ($\phi_{u_{i}=0}$ is satisfiable)

$$
u_{i}=0, \phi=\phi_{u_{i}=0}
$$

else if ($\phi_{u_{i}=1}$ is satisfiable)

$$
u_{i}=1, \phi=\phi_{u_{i}=1}
$$

Runtime of B if ϕ has n variables:

$2 n+1$ calls to A

Search vs Decision

Theorem: Suppose that $\mathrm{P}=\mathrm{NP}$. Then, for every $L \in \mathrm{NP}$ and a verifier TM M for L, there is a polytime TM B that on input $x \in L$ outputs a certificate for x w.r.t L and M, if $x \in L$.

Proof: Let $L=S A T$ and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ϕ, finds a satisfying assignment for ϕ if it exists.
$B(\phi)$:
if (ϕ is not satisfiable) return NULL
for $i=1$ to $n / / n=\#$ of variables of ϕ.
if ($\phi_{u_{i}=0}$ is satisfiable)

$$
u_{i}=0, \phi=\phi_{u_{i}=0}
$$

else if ($\phi_{u_{i}=1}$ is satisfiable)

Runtime of B if ϕ has n variables:

$2 n+1$ calls to A and some polytime work

$$
u_{i}=1, \phi=\phi_{u_{i}=1}
$$

Search vs Decision

Search vs Decision

Recall: For $L \in$ NP:

Search vs Decision

Recall: For $L \in$ NP:

$x \in L \Longleftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)}$ and $I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right)$, where $\left|\mathcal{S}_{i}\right|=c$, such that:

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {ipputpos }(i)}, I D_{\text {prev }(i)}, I D_{i}\right)=1 .\left((3 c+1) \cdot 2^{(3 c+1)}\right.$ size $\left.\phi_{3_{i}}\right)$
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }}, 1\right)$. $\left(\right.$ Constant size $\left.\phi_{4}\right)$

Search vs Decision

Recall: For $L \in$ NP:

$$
x \in L \Leftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)} \text { and } I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right) \text {, where }\left|\mathcal{S}_{i}\right|=c \text {, such that: }
$$

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\text {prev }(i)}, I D_{i}\right)=1 .\left((3 c+1) \cdot 2^{(3 c+1)}\right.$ size $\left.\phi_{3_{i}}\right)$
4) $I D_{p^{\prime}(x \mid)}=\left(q_{\text {nalt }}, 1\right)$. (Constant size $\left.\phi_{4}\right)$

Observation: Satisfying assignment for $\phi_{x}=\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}$ contains certificate u for x.

Search vs Decision

Recall: For $L \in$ NP:

$$
x \in L \Leftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)} \text { and } I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right) \text {, where }\left|\mathcal{S}_{i}\right|=c \text {, such that: }
$$

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\text {prev }(i)}, I D_{i}\right)=1 .\left((3 c+1) .2^{(3 c+1)}\right.$ size $\left.\phi_{3_{i}}\right)$
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {nalt }},, 1\right)$. (Constant size $\left.\phi_{4}\right)$

Observation: Satisfying assignment for $\phi_{x}=\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}$ contains certificate u for x.
Let $L \in \mathrm{NP}$ and M be its verifier.

Search vs Decision

Recall: For $L \in$ NP:

$$
x \in L \Leftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)} \text { and } I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right) \text {, where }\left|\mathcal{S}_{i}\right|=c \text {, such that: }
$$

1) First $|x|$ bits of $y=x$. (Linear size ϕ_{1}. If $x=101$, then $\left.\phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right)$
2) $I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right)$. (Constant size $\left.\phi_{2}\right)$
3) $\forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\text {prev(i) }}, I D_{i}\right)=1 .\left((3 c+1) .2^{(3 c+1)}\right.$ size $\left.\phi_{3}\right)$
4) $I D_{p^{\prime}(|x|)}=\left(q_{\text {halt }},-1\right)$. (Constant size $\left.\phi_{4}\right)$

Observation: Satisfying assignment for $\phi_{x}=\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}$ contains certificate u for x.
Let $L \in \mathrm{NP}$ and M be its verifier. We can find the certificate of $x \in L$ in the following way:

Search vs Decision

Recall: For $L \in$ NP:

$$
\begin{aligned}
& x \in L \Leftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)} \text { and } I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right) \text {, where }\left|\mathcal{S}_{\mathcal{S}}\right|=c, \text { such that: } \\
& \text { 1) First } \left.|x| \text { bits of } y=x \text {. (Linear size } \phi_{1} \text {. } \mid f x=101 \text {, then } \phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right) \\
& \text { 2) } \left.I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right) \text {. (Constant size } \phi_{2}\right) \\
& \text { 3) } \forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\text {prev(i) }}, I D_{i}\right)=1 .\left((3 c+1) .2^{(3 c+1)} \text { size } \phi_{3_{i}}\right) \\
& \text { 4) } I D_{p^{\prime}(|x|)}=\left(q_{\text {halt, }, 1) .,\left(\text { Constant size } \phi_{4}\right)}\right.
\end{aligned}
$$

Observation: Satisfying assignment for $\phi_{x}=\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}$ contains certificate u for x.

Let $L \in \mathrm{NP}$ and M be its verifier. We can find the certificate of $x \in L$ in the following way:

- Map x to ϕ_{x}.

Search vs Decision

Recall: For $L \in$ NP:

$$
\begin{aligned}
& x \in L \Leftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)} \text { and } I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right) \text {, where }\left|\mathcal{S}_{\mathcal{S}}\right|=c, \text { such that: } \\
& \text { 1) First } \left.|x| \text { bits of } y=x \text {. (Linear size } \phi_{1} \text {. } \mid f x=101 \text {, then } \phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right) \\
& \text { 2) } \left.I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right) \text {. (Constant size } \phi_{2}\right) \\
& \text { 3) } \forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\text {prev(i) }}, I D_{i}\right)=1 .\left((3 c+1) .2^{(3 c+1)} \text { size } \phi_{3_{i}}\right) \\
& \text { 4) } I D_{p^{\prime}(|x|)}=\left(q_{\text {halt, }, 1) .,\left(\text { Constant size } \phi_{4}\right)}\right.
\end{aligned}
$$

Observation: Satisfying assignment for $\phi_{x}=\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}$ contains certificate u for x.

Let $L \in \mathrm{NP}$ and M be its verifier. We can find the certificate of $x \in L$ in the following way:

- Map x to ϕ_{x}.
- Find a satisfying assignment for ϕ_{x} and get certificate of x from it.

Search vs Decision

Recall: For $L \in$ NP:

$$
\begin{aligned}
& x \in L \Leftrightarrow \exists y \in\{0,1\}^{|x|+p(|x|)} \text { and } I D=\left(I D_{1}, I D_{2}, \ldots, I D_{p^{\prime}(|x|)}\right) \text {, where }\left|\mathcal{S}_{\mathcal{S}}\right|=c, \text { such that: } \\
& \text { 1) First } \left.|x| \text { bits of } y=x \text {. (Linear size } \phi_{1} \text {. } \mid f x=101 \text {, then } \phi_{1}=\left(Y_{1}\right) \wedge\left(\neg Y_{2}\right) \wedge\left(Y_{3}\right)\right) \\
& \text { 2) } \left.I D_{1}=\left(q_{\text {start }} \triangleright, \triangleright\right) \text {. (Constant size } \phi_{2}\right) \\
& \text { 3) } \forall i \in\left[2, p^{\prime}(|x|)\right], F_{i}\left(I D_{i-1}, y_{\text {inputpos }(i)}, I D_{\text {prev(i) }}, I D_{i}\right)=1 .\left((3 c+1) .2^{(3 c+1)} \text { size } \phi_{3_{i}}\right) \\
& \text { 4) } I D_{p^{\prime}(|x|)}=\left(q_{\text {halt, }, 1) .,\left(\text { Constant size } \phi_{4}\right)}\right.
\end{aligned}
$$

Observation: Satisfying assignment for $\phi_{x}=\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}$ contains certificate u for x.

Let $L \in \mathrm{NP}$ and M be its verifier. We can find the certificate of $x \in L$ in the following way:

- Map x to ϕ_{x}.
- Find a satisfying assignment for ϕ_{x} and get certificate of x from it.

