
Lecture 11

Cook-Levin Theorem (contd.), Search vs Decision

Constructing the ϕx

 , s.t. x ∈ L ⟺ ∃u ∈ {0,1}p(|x|) M(x, u) = 1

Constructing the ϕx

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

Constructing the ϕx

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x

Constructing the ϕx

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)

Constructing the ϕx

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]

Constructing the ϕx

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

• That checks whether and satisfy the AND of conditions , , , and .y ID 1) 2) 3) 4)

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

• That checks whether and satisfy the AND of conditions , , , and .y ID 1) 2) 3) 4)

(Linear size . If , then)ϕ1 x = 101 ϕ1 = (Y1) ∧ (¬Y2) ∧ (Y3)

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

• That checks whether and satisfy the AND of conditions , , , and .y ID 1) 2) 3) 4)

(Linear size . If , then)ϕ1 x = 101 ϕ1 = (Y1) ∧ (¬Y2) ∧ (Y3)
(Constant size)ϕ2

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

• That checks whether and satisfy the AND of conditions , , , and .y ID 1) 2) 3) 4)

(Linear size . If , then)ϕ1 x = 101 ϕ1 = (Y1) ∧ (¬Y2) ∧ (Y3)
(Constant size)ϕ2

(Constant size)ϕ4

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

• That checks whether and satisfy the AND of conditions , , , and .y ID 1) 2) 3) 4)

(Linear size . If , then)ϕ1 x = 101 ϕ1 = (Y1) ∧ (¬Y2) ∧ (Y3)
(Constant size)ϕ2

(Constant size)ϕ4

(size)(3c + 1).2(3c+1) ϕ3i

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

 and , where , such that:x ∈ L ⟺ ∃y ∈ {0,1}|x|+p(|x|) ID = (ID1, ID2, …, IDp′ (|x|)) | IDi | = c

 First bits of .1) |x | y = x
 .2) ID1 = (qstart, ▹ , ▹)
 ,3) ∀i ∈ [2,p′ (|x |)]
 .4) IDp′ (|x|) = (qhalt, _,1)

Constructing from :ϕx x

• Compute and by running on .prev(i) inputpos(i) M 0|x|+p(|x|)

• Construct boolean formula :ϕx

• With variables Y1, Y2, …Y|x|+p(|x|)

• That checks whether and satisfy the AND of conditions , , , and .y ID 1) 2) 3) 4)

(Linear size . If , then)ϕ1 x = 101 ϕ1 = (Y1) ∧ (¬Y2) ∧ (Y3)
(Constant size)ϕ2

(Constant size)ϕ4

(size)(3c + 1).2(3c+1) ϕ3i

Constructing the ϕx

.Fi(IDi−1, yinputpos(i), IDprev(i), IDi) = 1

and for every .IDi1, IDi2, …, IDic i ∈ [1,p′ (|x |)]

3SAT is NP-Complete

3SAT is NP-Complete
Idea:

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

ϕ =

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)ϕ =

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)ϕ =

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)ϕ =

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)ϕ =

 ϕ′ = ∧

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u)

ϕ =

 ϕ′ = ∧

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

ϕ =

 ϕ′ = ∧

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

ϕ =

 ϕ′ = ∧

Time to break a clause of literals into a 3CNF formula:k

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

ϕ =

 ϕ′ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

ϕ =

 ϕ′ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

• T(3) = c

3SAT is NP-Complete
Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of literals into k > 3

two clauses of almost many literals. k/2

(u1 ∨ u2 ∨ … ∨ uk)

(u1 ∨ u2… ∨ uk/2 ∨ u) (uk/2+1 ∨ uk/2+2… ∨ uk ∨ ¬u)

ϕ =

 ϕ′ = ∧

Time to break a clause of literals into a 3CNF formula:k

• T(k) =

• T(3) = c
2.T(k/2 + 1) + O(k)

Isn’t 2SAT also NP-Complete?

Isn’t 2SAT also NP-Complete?

(u1 ∨ u2 ∨ u3)

Isn’t 2SAT also NP-Complete?

(u1 ∨ u2 ∨ u3)

(u1 ∨ u2 ∨ u) (u3 ∨ ¬u)

Isn’t 2SAT also NP-Complete?

(u1 ∨ u2 ∨ u3)

(u1 ∨ u2 ∨ u) (u3 ∨ ¬u)

Further breakdown isn’t possible.

Search vs Decision

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea:

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea: Let ϕ = (u1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea: Let ϕ = (u1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3)

 ϕu1=0 = (0 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (1 ∨ u3)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea: Let ϕ = (u1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3)

 ϕu1=0 = (0 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (1 ∨ u3)

 ϕu1=1 = (1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (0 ∨ u3)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea: Let ϕ = (u1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3)

 ϕu1=0 = (0 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (1 ∨ u3)

 ϕu1=1 = (1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (0 ∨ u3)

 = (u2) ∧ (¬u2 ∨ ¬u3)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea: Let ϕ = (u1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3)

 ϕu1=0 = (0 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (1 ∨ u3)

 ϕu1=1 = (1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (0 ∨ u3)

 = (u2) ∧ (¬u2 ∨ ¬u3)

 = (¬u2 ∨ ¬u3) ∧ (u2)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is= L ∈ M L
a polytime TM that on input outputs a certificate for w.r.t and , if .B x ∈ L x L M x ∈ L
Proof: Let SAT and be a polytime TM that decides SAT.L = A
Create a polytime TM that on input , finds a satisfying assignment for if it exists.B ϕ ϕ

Idea: Let ϕ = (u1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (¬u1 ∨ u3)

If is satisfiable then either or is satisfiable.ϕ ϕu1=0 ϕu1=1

 ϕu1=0 = (0 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (1 ∨ u3)

 ϕu1=1 = (1 ∨ u2) ∧ (¬u2 ∨ ¬u3) ∧ (0 ∨ u3)

 = (u2) ∧ (¬u2 ∨ ¬u3)

 = (¬u2 ∨ ¬u3) ∧ (u2)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

:B(ϕ)

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

if (is satisfiable)ϕui=0

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

if (is satisfiable)ϕui=0

 , ui = 0 ϕ = ϕui=0

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

if (is satisfiable)ϕui=0

 , ui = 0 ϕ = ϕui=0

else if (is satisfiable)ϕui=1

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

if (is satisfiable)ϕui=0

 , ui = 0 ϕ = ϕui=0

else if (is satisfiable)ϕui=1

 , ui = 1 ϕ = ϕui=1

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

Runtime of if has variables:B ϕ n
if (is satisfiable)ϕui=0

 , ui = 0 ϕ = ϕui=0

else if (is satisfiable)ϕui=1

 , ui = 1 ϕ = ϕui=1

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

Runtime of if has variables:B ϕ n
 calls to 2n + 1 A

if (is satisfiable)ϕui=0

 , ui = 0 ϕ = ϕui=0

else if (is satisfiable)ϕui=1

 , ui = 1 ϕ = ϕui=1

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

Search vs Decision
Theorem: Suppose that P NP. Then, for every NP and a verifier TM for , there is

a polytime TM that on input outputs a certificate for w.r.t and , if .

Proof: Let SAT and be a polytime TM that decides SAT.

Create a polytime TM that on input , finds a satisfying assignment for if it exists.

= L ∈ M L
B x ∈ L x L M x ∈ L

L = A
B ϕ ϕ

Runtime of if has variables:B ϕ n
 calls to 2n + 1 A

if (is satisfiable)ϕui=0

 , ui = 0 ϕ = ϕui=0

else if (is satisfiable)ϕui=1

 , ui = 1 ϕ = ϕui=1

// = # of variables of .n ϕ

:B(ϕ)
 if (is not satisfiable) return NULLϕ
 for to i = 1 n

and some polytime work

Search vs Decision

Search vs Decision
Recall: For NP: L ∈

Search vs Decision
Recall: For NP: L ∈

Search vs Decision
Recall: For NP: L ∈

Observation: Satisfying assignment for contains certificate for .ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 u x

Search vs Decision
Recall: For NP: L ∈

Let NP and be its verifier.L ∈ M

Observation: Satisfying assignment for contains certificate for .ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 u x

Search vs Decision
Recall: For NP: L ∈

Let NP and be its verifier.L ∈ M We can find the certificate of in the following way:x ∈ L

Observation: Satisfying assignment for contains certificate for .ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 u x

Search vs Decision
Recall: For NP: L ∈

Let NP and be its verifier.L ∈ M

• Map to .x ϕx

We can find the certificate of in the following way:x ∈ L

Observation: Satisfying assignment for contains certificate for .ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 u x

Search vs Decision
Recall: For NP: L ∈

Let NP and be its verifier.L ∈ M

• Map to .x ϕx

• Find a satisfying assignment for and get certificate of from it.ϕx x

We can find the certificate of in the following way:x ∈ L

Observation: Satisfying assignment for contains certificate for .ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 u x

Search vs Decision
Recall: For NP: L ∈

Let NP and be its verifier.L ∈ M

• Map to .x ϕx

• Find a satisfying assignment for and get certificate of from it.ϕx x

We can find the certificate of in the following way:x ∈ L

Observation: Satisfying assignment for contains certificate for .ϕx = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 u x

