Lecture 11

Cook-Levin Theorem (contd.), Search vs Decision

Constructing the ¢,

Constructing the ¢,

x €L < Jue {0,110 st Mx,u) =1

Constructing the ¢,
x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) IDy = (G >+ B>).

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2p(|x])],

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) IDI — (qstart’ >, b)

Y inputpos(i)? rev(i)?

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D ID vy = Gpaip —>1)-

yinputpOS(i)’ IDprev(i)a IDZ) — 1 .

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D ID vy = Gpaip —>1)-

ID, s ID) = 1.

Y inputpos(i)? rev(i)’

Constructing ¢, from x:

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D ID vy = Gpaip —>1)-

ID, s ID) = 1.

Y inputpos(i)? rev(i)’

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D ID vy = Gpaip —>1)-

ID, s ID) = 1.

Y inputpos(i)? rev(i)?

Constructing ¢, from x:
e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D ID vy = Gpaip —>1)-

ID, s ID) = 1.

Y inputpos(i)? rev(i)?

Constructing ¢, from x:
e Compute prev(i) and inputpos(i) by running M on ol I+PUxD,
® Construct boolean formula ¢, :

o With variables Y, Y, ... Y1 1p(x)

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D ID vy = Gpaip —>1)-

ID, s ID) = 1.

Y inputpos(i)? rev(i)?

Constructing ¢, from x:
e Compute prev(i) and inputpos(i) by running M on ol I+PUxD,
® Construct boolean formula ¢, :

o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x.
2) ID} = (G > +).
3) Vie [2,p(|x])], FiUD;_y,
D) ID vy = Qharp —>1)-

ID, s ID) = 1.

Y inputpos(i)? rev(i)’

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :
o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].
® That checks whether y and ID satisty the AND of conditions 1), 2), 3), and 4).

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢, = (¥,) A (=Y,) A (V)
2) ID; = (qyaps >+).
3) Vie [2p(|x])], FUD;_,
4) ID, vy = Gpair —51).

ID, i ID) = 1.

Y inputpos(i)? rev(i)?

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :
o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].
® That checks whether y and ID satisty the AND of conditions 1), 2), 3), and 4).

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢, = (¥,) A (=Y,) A (V)
2) ID; = (44, >, >). (Constant size ¢,)
3) Vie [2,p(|x])], FiUD;_y, D),
4) ID, vy = Gpair —51).

Yinputpos(i)» rev(i)? / Dz) = 1.

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :
o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].
® That checks whether y and ID satisty the AND of conditions 1), 2), 3), and 4).

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢, = (¥,) A (=Y,) A (V)
2) ID; = (44, >, >). (Constant size ¢,)
3) Vie [2,p(|x])], FiUD;_y, D,
4) ID, vy = (Gpais —»1)- (Constant size ¢

Yinputpos(i)» rev(i)? / Dz) = 1.

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :
o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].
® That checks whether y and ID satisty the AND of conditions 1), 2), 3), and 4).

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢, = (¥,) A (=Y,) A (V)
2) ID; = (44, >, >). (Constant size ¢,)
3) VI E [Zap/(|x‘)]l Fi(IDi—la IDp
4) ID, vy = (Gpais —»1)- (Constant size ¢

ID) = 1. (3¢ + 1).20V size ¢bs)

Y inputpos(i)? rev(i)?

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :
o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].
® That checks whether y and ID satisty the AND of conditions 1), 2), 3), and 4).

Constructing the ¢,

x €L < 3y e {0,1}¥+P0x) and ID = (UDy, 1Dy, ..., ID 1), where |ID;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢, = (¥,) A (=Y,) A (V)
2) ID; = (44, >, >). (Constant size ¢,)
3) VI E [Zap/(|x‘)]l Fi(IDi—la IDp
4) ID, vy = (Gpais —»1)- (Constant size ¢

ID) = 1. (3¢ + 1).20V size ¢bs)

Y inputpos(i)? rev(i)?

Constructing ¢, from x:

e Compute prev(i) and inputpos(i) by running M on Qll+PUxD,

® Construct boolean formula ¢, :
o With variables Y|, Yy, ... Y 4y @nd ID;y, IDyy, ..., ID; for every i € [1,p'(|x])].
® That checks whether y and ID satisty the AND of conditions 1), 2), 3), and 4).

3SAT is NP-Complete

3SAT is NP-Complete

Idea:

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

O =

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

¢/: (u1Vu2...Vuk/2Vu) AN

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

¢/: (ul vuz vuk/zvu) A\ (I/lk/2_|_1 Vuk/2_|_2... VukV—lI/t)

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

¢/: (ul vuz vuk/zvu) A\ (I/lk/2_|_1 Vuk/2_|_2... VukV—lI/t)

Time to break a clause of k literals into a 3CNF formula:

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

¢/: (ul vuz vuk/zvu) A\ (I/lk/2_|_1 Vuk/2_|_2... VukV—lI/t)

Time to break a clause of k literals into a 3CNF formula:

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

¢/: (ul vuz vuk/zvu) A\ (I/lk/2_|_1 Vuk/2_|_2... VukV—lI/t)

Time to break a clause of k literals into a 3CNF formula:
o 7(3)=c

3SAT is NP-Complete

Idea: Reduce SAT to 3SAT by repeatedly breaking down clauses of k > 3 literals into

two clauses of almost £/2 many literals.

¢/: (ul vuz vuk/zvu) A\ (I/lk/2_|_1 Vuk/2_|_2... VukV—lI/t)

Time to break a clause of k literals into a 3CNF formula:
o T(k)=2Tk/2+ 1)+ O(k)
o 7(3)=c

Isn’t 2SAT also NP-Complete?

Isn’t 2SAT also NP-Complete?

(U Vu,V i)

Isn’t 2SAT also NP-Complete?

(U Vu,V i)

Isn’t 2SAT also NP-Complete?

(U Vu,V i)

Further breakdown Lsn’t possLbLe.

Search vs Decision

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea:

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea: Let) = (u; V uy) A (D, V 7)) A (D V ity)

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea: Let) = (u; V uy) A (D, V 7)) A (D V ity)

¢u1=0 =OVu) A(mu, Vu) Al V)

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea: Let) = (u; V uy) A (D, V 7)) A (D V ity)

¢u1=0 =OVu) A(mu, Vu) Al V)

1) = Vu)AN("u, V-u)) A0V uy)

l/llzl T

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea: Let) = (u; V uy) A (D, V 7)) A (D V ity)

Gy=0 = OVu) A7y Vo)) A(1Vig) = () A7y V)

1) = Vu)AN("u, V-u)) A0V uy)

l/llzl T

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea: Let) = (u; V uy) A (D, V 7)) A (D V ity)

Gy=0 = OVu) A7y Vo)) A(1Vig) = () A7y V)

1) =(IVu)A("uy Vou)) AOVug) = (1uy VvV us) A ()

l/llzl T

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Idea: Let ¢p = (u; V up) A (7t V 2g) A (D Vo Uty)
Gy=0 = OVu) A7y Vo)) A(1Vig) = () A7y V)
¢ =(IVu)A("uy Vou)) AOVug) = (1uy VvV us) A ()

l/llzl T

It ¢ is satistiable then either ¢, _ or ¢, _; is satistiable.

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is

a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.
Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satistiable) return NULL

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(¢):
if (¢ is not satistiable) return NULL

fori=1ton

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satistiable) return NULL

fori=1ton //n=4#ofvariables of ¢.

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satistiable) return NULL

fori=1ton //n=4#ofvariables of ¢.

if (¢, o is satistiable)

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satistiable) return NULL

fori=1ton //n=4#ofvariables of ¢.

if (¢, o is satistiable)
U, = 0, ¢ — ¢ui=0

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satistiable) return NULL

fori=1ton //n=4#ofvariables of ¢.

if (¢, o is satistiable)

Ui = O' ¢ — ¢ui=0
else if (¢

u=1 IS satistiable)

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satistiable) return NULL

fori=1ton //n=4#ofvariables of ¢.
if (¢, o is satistiable)
u; =0, ¢ = ¢, -0
else if (¢, _
w,=1,¢=¢,-

s satistiable)

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satisfiable) return NULL

fori=1ton //n=4#ofvariables of ¢.
if (¢, o is satistiable)
u; =0, ¢ = ¢, -0
else if (¢, _
w,=1,¢=¢,-

Runtime of B if ¢ has n variables:

s satistiable)

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satisfiable) return NULL

fori=1ton //n=4#ofvariables of ¢.
if (¢, _, is satistiable)
| Runtime of B if ¢ has n variables:
U; = O' ¢ — ¢ui=0
2n+ 1 callsto A
else if (¢ui=1 s satistiable)

U; = 1' ¢ — ¢u,~=1

Search vs Decision

Theorem: Suppose that P = NP. Then, for every L € NP and a verifier TM M for L, there is
a polytime TM B that on input x € L outputs a certificate forx w.rt Land M, it x € L.

Proof: Let L = SAT and A be a polytime TM that decides SAT.
Create a polytime TM B that on input ¢, finds a satistying assignment for ¢ if it exists.

B(9):

if (¢ is not satisfiable) return NULL

fori=1ton //n=4#ofvariables of ¢.
if (¢, _, is satistiable)
| Runtime of B if ¢ has n variables:
U, = 0, ¢ — ¢ui=0 :
. 2n + 1 calls to A and some polytime work
else if (¢, _, is satistiable)

U; = 1' ¢ — ¢u,~=1

Search vs Decision

Search vs Decision

Recall: For L. € NP:

Search vs Decision

Recall: For L. € NP:

xX€EL < dye {0,1}Y*+P0xD and ID = (IDy, ID,, “"IDp’(IxI))' where | &;| = ¢, such that:
1) First | x| bits of y =x. (Linear size ¢,. It x = 101, then ¢ = (¥)) A (= Y,) A (¥3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi € [2,p'(|x1)], FAID;_y; Yinpuspostiy IPpreviiyy IP) = 1. (3¢ + 1).20"V size)
4) ID vy = Gpair —»1)- (Constant size ¢,)

Search vs Decision

Recall: For L. € NP:

x €L < 3y e {0,1}M+PD and ID = (IDy,ID,, ..., ID), Where | &';| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢p; = (Y;) A (=Y,) A (V3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi€ [2,p(1xD)), FAUD,;_ 1, Yinpupostiy IPprevii ID) = 1. ((Bc + 1).20 Y size ¢p)
4) ID 151y = (Gpai —»1)- (Constant size ¢,)

Observation: Satistying assignment for ¢, = ¢; A ¢, A ;3 A ¢, contains certiticate u for x.

Search vs Decision

Recall: For L. € NP:

x €L < 3y e {0,1}M+PD and ID = (IDy,ID,, ..., ID), Where | &';| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢p; = (Y;) A (=Y,) A (V3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi € [2,p'(|1x D], FAD;_1, Yinpumpostiy IPpreviiy ID) = 1. ((Bc + 1).20¢V size ¢hy)
4) ID 151y = (Gpai —»1)- (Constant size ¢,)

Observation: Satistying assignment for ¢, = ¢; A ¢, A ;3 A ¢, contains certiticate u for x.

Let L. € NP and M be its verifier.

Search vs Decision

Recall: For L. € NP:

x €L < 3y e {0,1}M+PD and ID = (IDy,ID,, ..., ID), Where | &';| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢p; = (Y;) A (=Y,) A (V3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi€ [2,p'(1xD)), FUD,;_1,Yinpupostiy IPpreviiyy ID) = 1. ((Bc + 1).20" Y size ¢h,)
4) ID 151y = (Gpai —»1)- (Constant size ¢,)

Observation: Satistying assignment for ¢, = ¢; A ¢, A ;3 A ¢, contains certiticate u for x.

Let L € NP and M be its veritier. We can find the certificate of x € L in the following way:

Search vs Decision

Recall: For L. € NP:

x €L < 3y e {0,1}M+PD and ID = (IDy,ID,, ..., ID), Where | &';| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢p; = (Y;) A (=Y,) A (V3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi€ [2,p'(1xD)), FUD,;_1,Yinpupostiy IPpreviiyy ID) = 1. ((Bc + 1).20" Y size ¢h,)
4) ID 151y = (Gpai —»1)- (Constant size ¢,)

Observation: Satistying assignment for ¢, = ¢; A ¢, A ;3 A ¢, contains certiticate u for x.

Let L € NP and M be its veritier. We can find the certificate of x € L in the following way:
® Map x to ¢,.

Search vs Decision

Recall: For L. € NP:

xX€EL < dye {0,1}*+2P0xD) and ID = (IDy, ID,, '“’IDp’(IxI))' where | &;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢p; = (Y;) A (=Y,) A (V3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi€ [2,p'(1xD)), FUD,;_1,Yinpupostiy IPpreviiyy ID) = 1. ((Bc + 1).20" Y size ¢h,)
4) ID 151y = (Gpai —»1)- (Constant size ¢,)

Observation: Satistying assignment for ¢, = ¢; A ¢, A ;3 A ¢, contains certiticate u for x.

Let L € NP and M be its veritier. We can find the certificate of x € L in the following way:
® Map x to ¢,.

® Find a satistying assignment for ¢, and get certificate of x from it.

Search vs Decision

Recall: For L. € NP:

xX€EL < dye {0,1}*+2P0xD) and ID = (IDy, ID,, '“’IDp’(IxI))' where | &;| = ¢, such that:
1) First | x| bits of y = x. (Linear size ¢,. If x = 101, then ¢p; = (Y;) A (=Y,) A (V3))
2) ID; = (g4, > » >). (Constant size ¢,)
3) Vi€ [2,p'(1xD)), FUD,;_1,Yinpupostiy IPpreviiyy ID) = 1. ((Bc + 1).20" Y size ¢h,)
4) ID 151y = (Gpai —»1)- (Constant size ¢,)

Observation: Satistying assignment for ¢, = ¢; A ¢, A ;3 A ¢, contains certiticate u for x.

Let L € NP and M be its veritier. We can find the certificate of x € L in the following way:
® Map x to ¢,.

® Find a satistying assignment for ¢, and get certificate of x from it.

